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Abstract
In this paper, we study the flow on three invariant sets of dimension five for the
classical Bianchi IX system. In these invariant sets, using the Darboux theory
of integrability, we prove the non-existence of periodic solutions and we study
their dynamics. Moreover, we find three invariant sets of dimension four where
the flow is integrable.

PACS numbers: 02.30.Hq, 02.30.Ik

1. Introduction

The Bianchi IX model, also known as the mixmaster universe model, is obtained through a
convenient solution of Einstein’s equations and corresponds to the Hamiltonian system

q̇1 = 12q1(p1q1 − p2q2 − p3q3),

q̇2 = 12q2(−p1q1 + p2q2 − p3q3),

q̇3 = 12q3(−p1q1 − p2q2 + p3q3),

ṗ1 = −12p1(p1q1 − p2q2 − p3q3) − 1
3 (q1 − q2 − q3),

ṗ2 = −12p2(−p1q1 + p2q2 − p3q3) − 1
3 (−q1 + q2 − q3),

ṗ3 = −12p3(−p1q1 − p2q2 + p3q3) − 1
3 (−q1 − q2 + q3),

(1)

in R
6 with three degrees of freedom and with zero energy, i.e. G = 0 for the Hamiltonian

G = 6
(
p2

1q
2
1 + p2

2q
2
2 + p2

3q
2
3 − 2p1q1p2q2 + 2p1q1p3q3 − 2p2q2p3q3

)

+ 1
6

(
q2

1 + q2
2 + q2

3 − 2q1q2 − 2q1q3 − 2q2q3
)
. (2)

Of course q̇i = Gpi
and ṗi = −Gqi

for i = 1, 2, 3. The function G is a first integral of system
(1), i.e., it is a function which is constant over the trajectories of this system. As usual the dots
in system (1) denote the derivative with respect to the time t.
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This model has attracted the interest of both cosmologists and integrability specialists.
See for instance [2, 4–7, 9–12].

Consider the coordinate change defined by

yi = qi, zi = piqi,

for i = 1, 2, 3. In these coordinates, system (1) becomes the following homogeneous
polynomial differential system of degree 2 in R

6:

ẏ1 = y1(z1 − z2 − z3),

ẏ2 = y2(−z1 + z2 − z3),

ẏ3 = y3(−z1 − z2 + z3),

ż1 = −y1(y1 − y2 − y3),

ż2 = −y2(−y1 + y2 − y3),

ż3 = −y3(−y1 − y2 + y3),

(3)

and the first integral G can be written now as

H = (
z2

1 + z2
2 + z2

3 − 2z1z2 − 2z1z3 − 2z2z3
)/

2

+
(
y2

1 + y2
2 + y2

3 − 2y1y2 − 2y1y3 − 2y2y3
)
/2. (4)

For i = 1, 2, 3, the hyperplane yi = 0 is invariant by the flow of system (3) and zi is a
first integral on the hyperplane yi = 0. Here, an invariant set under the flow of system (3)
means that if an orbit of this system has a point on this set, then the whole orbit is contained
into the set.

We observe that the equations of system (3) are invariant by the permutation

(y1, y2, y3, z1, z2, z3) �→ (y2, y3, y1, z2, z3, z1) �→ (y3, y1, y2, z3, z1, z2). (5)

Therefore, to know the dynamics on the hyperplane y1 = 0 is equivalent to know it at any
hyperplane yi = 0 for i = 1, 2, 3. Hence, in what follows we only study the dynamics on the
hyperplane y1 = 0 and only state explicitly the results for this hyperplane.

For every c ∈ R, the solutions of system (3) restricted to the invariant four-dimensional
hyperplane of codimension 2

� = {(y1 = 0, y2, y3, z1 = c, z2, z3) ∈ R
6}

are given by the solutions of the system

ẏ2 = y2(z2 − z3 − c),

ẏ3 = y3(−z2 + z3 − c),

ẏ4 = −y2(y2 − y3),

ẏ5 = −y3(−y2 + y3).

(6)

Let s < 4. The functions F1, . . . , Fs : � → R are independent if the s × 4 matrix

∂(F1, . . . , Fs)

∂(y2, y3, z2, z3)

has rank s at all points (0, y2, y3, c, z2, z3) ∈ �, except perhaps on a subset of � of Lebesgue
measure zero.

Our main results are the following three theorems.

Theorem 1. If c = 0, then system (6) is integrable (i.e. it has three independent first integrals).
Moreover, we provide the explicit expression of its solutions.
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We observe here that if a system is integrable, then we can obtain its orbits simply
performing the intersections of the level sets of its first integrals.

Let ϕ(t) = ϕ(t, p) be the solution of system (6) passing through the point p = (0, y2,

y3, c, z2, z3) ∈ �, defined on its maximal interval Ip = (�−(p),�+(p)). If �+(p) = ∞
then the � -limit set of p is

�(p) = {q ∈ � : ∃{tn} such that tn → ∞ and ϕ(tn) → q as n → ∞}.
In the same way, if �−(p) = −∞ the α-limit set of p is

α(p) = {q ∈ � : ∃{tn} such that tn → −∞ and ϕ(tn) → q as n → ∞}.

Theorem 2. Assume c �= 0. If y1 = 0 and z1 = c, then system (6) defined on � has two
invariant hyperplanes y2 = 0 and y3 = 0, and the invariant function F(y2, y3, z2, z3, t) =
y2y3 e2ct (i.e. a first integral depending on the time). Moreover, the following statements hold:

(a) If c > 0, the α-limit of the orbits are in the hyperplanes y2 = 0 or y3 = 0.
(b) If c < 0, the ω-limit of the orbits are in the hyperplanes y2 = 0 or y3 = 0.
(c) The function H(y2, y3, z2, z3) = (z2 − z3)

2 − 2c(z2 + z3) + (y2 − y3)
2 is a first integral.

We must mention that under the assumptions of theorem 2 the dynamics on the invariant
subspace y2 = 0 is given by the two-dimensional system

ẏ3 = y3(k + z3), ż3 = −y2
3 ,

where k is a convenient constant. The orbits of this system are the level curves of its first
integral K = (

y2
3 + z2

3

)/
2 + kz3. The dynamics on the subspace y3 = 0 is similar. In short, the

α-limits or the ω-limits of the orbits of statements (a) and (b) of theorem 2 are well known.
Since the hyperplane y1 = 0 is the union of the hyperplanes y1 = 0, z1 = c with c ∈ R,

theorems 1 and 2 provide information on the dynamics over the whole invariant hyperplane
y1 = 0.

Our last result states the non-existence of periodic orbits in the hyperplane y1 = 0.

Theorem 3. System (3) has no periodic orbits in the invariant hyperplane y1 = 0.

The paper is organized as follows. In section 2 we prove theorems 1 and 2, and in
section 3 we prove theorem 3.

2. On the dynamics over the invariant hyperplane y1 = 0

In this section, we will prove theorems 1 and 2.

Proof of theorem 1. Now c = 0. We have that {(b, b, 0, 0); b ∈ R} is a straight line of
singular points of system (6). The eigenvalues of the linear part of system (6) at a singular
point (b, b, 0, 0) are 0, 0, 2bi,−2bi. To write the linear part of system (6) at (0, 0, 0, 0) into
its real Jordan canonical form, we use the following change of coordinates:

y2 = x2 − x4, y3 = x2 + x4,

z2 = x1 − x3, z3 = x1 + x3.
(7)

In these coordinates, system (6) with c = 0 becomes

ẋ1 = −2x2
4 , ẋ2 = 2x3x4,

ẋ3 = −2x2x4, ẋ4 = 2x2x3.
(8)
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This system restricted to the variables (x2, x3, x4) is invariant and it is close to the system
of the Euler–Lagrange equations of the rigid body with fixed centre of mass. Then its solution
is

x2(t) = A
√−k sn(2A(t + t0)|k),

x3(t) = A
√−k cn(2A(t + t0)|k),

x4(t) = A dn(2A(t + t0)|k),

and by direct integration we get that

x1(t) = B − E(am(2A(t + t0)|k), k)x4(t)√
1 − (x2(t)/A)2

,

where the functions sn, cn, dn are the Jacobi elliptic functions and E is the elliptic integral of
second kind. Of course, A, k, t0 and B are the constants of integration.

It is easy to check that the three functions

F1(x1, x2, x3, x4) = x2
3 + x2

4 = A2k,

F2(x1, x2, x3, x4) = x2
2 − x2

4 = −A2,

F3(x1, x2, x3, x4) = x1 −
x4E

(
am

(
dn−1

(
x4

/√
x2

4 − x2
2

∣∣k)∣∣k)∣∣k)
√

1 − x2
2

/(
x2

4 − x2
2

)

are first integrals of system (8). In this last equality k = (
x2

3 + x2
4

)/(
x2

4 − x2
2

)
. We consider

the four 3 × 3 minors of the 3 × 4 matrix

∂(F1, F2, F3)/∂(x1, x2, x3, x4).

Since the intersection where the four minors are zero has Lebesgue measure zero, it follows
that F1, F2 and F3 are independent. �

Proof of theorem 2. Now c �= 0. System (6), after the change of coordinates (7), becomes

ẋ1 = −2x2
4 , ẋ2 = 2x3x4 − cx2,

ẋ3 = −2x2x4, ẋ4 = 2x2x3 − cx4.
(9)

We observe that f1 = x2 − x4 = 0 and f2 = x2 + x4 = 0 are invariant hyperplanes. The
cofactor of f1 = 0 is k1 = −(2x3 + c) and the cofactor of f2 = 0 is k2 = 2x3 − c. Using the
Darboux theory of integrability, see [3, 8], we get that

F(x1, x2, x3, x4, s) = (
x2

2 − x2
4

)
e2ct

is an invariant function of system (9), i.e. dF/dt over the orbits of the system is zero.
If c > 0 and t → −∞ then F → 0. It means that f1f2 → 0 and the α-limit of the

orbits of system (9) are approaching the hyperplanes f1 = 0 or f2 = 0. So statement (a) of
theorem 1 is proved. If c < 0 and t → ∞ then F → 0. Again it means that f1f2 → 0 and the
ω-limit of the orbits of system (9) are approaching the hyperplanes f1 = 0 or f2 = 0. Hence,
this proves statement (b) of theorem 1.

Moreover, if we restrict the first integral H given by (4) to system (6), then we get the first
integral of statement (c). This completes the proof of theorem 2. �
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3. About the non-existence of periodic orbits

The goal of this section is to prove theorem 3 when y1 = 0 and z1 = c = constant for all c ∈ R.
The next two propositions establish the result for the cases c = 0 and c �= 0, respectively.

Proposition 4. If y1 = 0 and z1 = 0, then system (3) with c = 0 has no periodic orbits.

Proof. We consider the change of coordinates (7). System (3) restricted to y1 = 0 and z1 = 0
becomes system (6). This system with c = 0 after the change of variables (7) becomes system
(8). Since ẋ1 = −2x2

4 � 0, it follows that system (8) has no periodic orbits except if they are
contained in x4 = 0. If such a periodic orbit exists, then over it ẋ2 = 0 and ẋ3 = 0. So, on the
periodic orbit x2 and x3 are constant. Hence, from the fact that ẋ4 = 2x2x3 = constant, such
a periodic orbit cannot exists. �

Proposition 5. If y1 = 0 and z1 = c �= 0, then system (3) with c �= 0 has no periodic orbits.

Proof. System (3) restricted to y2 = 0 and y3 = c �= 0 is

ẏ3 = y3(−z2 + z3 − c), ż2 = 0, ż3 = −y2
3 . (10)

In order to investigate the existence of periodic orbit of system (3) on the hyperplane
y1 = 0, it is sufficient to study the existence for (10). Since ż3 = −y2

3 � 0, the periodic orbits
only can exist if y3 = 0, but then it would be formed by singular points, a contradiction. �

Proof of theorem 3. According to statements (a) and (b) of theorem 2, if system (3) restricted
to y1 = 0 has a periodic orbit it must be contained into the hyperplanes y2 = 0 or y3 = 0.
Therefore, using propositions 6 and 8 we conclude the proof. �

4. Conclusions

We have proved that the Bianchi IX system written into the form (3) has no periodic orbits on
the three five-dimensional invariant hyperplanes yk = 0 for k = 1, 2, 3, see theorem 3.

For every k = 1, 2, 3, we restrict our attention to the four-dimensional invariant
hyperplanes yk = 0 and zk = c with c ∈ R. If c = 0 then the Bianchi IX system restricted
to these three four-dimensional invariant hyperplanes is integrable, in the sense that we can
explicitly compute their solutions and that we provide three independent first integrals, see
theorem 1 and its proof. Moreover, for a given c �= 0 we show that the solutions on these three
four-dimensional invariant hyperplanes either start or end in the three-dimensional invariant
subhyperplanes planes yi = 0 or yj = 0 with i and j different from k, see theorem 2.
Additionally, the flow on these subhyperplanes is easy to study.
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